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ABSTRACT

At the end of Personal Knowledge, Polanyi discusses human development, arguing for a view of 
the human person as emerging out of but not constituted by its material substrate. As part of this 
view, he argues that the human person can never be likened to a computer, an inference machine, 
or a neural model because all are based in formalized processes of automation, processes that 
cannot account for the contribution of unformalizable, tacit knowing.  This paper revisits Po-
lanyi’s discussion of the emergence of consciousness and his rejection of neural models in light 
of recent developments in connectionism. Connectionist neural modeling proposes an emergentist 
account of brain structure and, in many ways, is compatible with Polanyi’s philosophy, even if 
it ultimately neglects questions of meaning. 

In his discussion of evolution in “The Rise of Man” at the end of Personal Knowledge, Polanyi touches 
on the emergent properties of human development. He argues in this section that the movement from 
embryo to fully developed human person cannot be explained either as mere preprogrammed maturation 
or as the result of an “external creative agency” (395). Rather, human development involves something 
he calls the “intensification of individuality” (395). According to this view, stages of development—new 
achievements of a developing human person—arise in a manner similar to the emergence of new scientific 
discoveries: both processes require the crossing of a “gap,” a heuristic gap in the case of the scientist or 
an ontological gap in the case of the human person. Just as the scientist strives toward a truth that can 
only be intimated, so too does the infant passionately strive toward an achievement yet to be realized but 
intimated as possible. The result of such striving is the emergence of personhood, achieved most fully 
when a child enters into the “traditional noosphere,” his or her culture’s “lasting articulate framework 
of thought” (388). For Polanyi, this intensification of individuality at the level of human development is 
consistent with his view that higher-order structures and characteristics of the human mind are not pre-
determined in the material substrate of biology but emerge indeterminately as a result of an individual’s 
personal commitment (395-397).  In this way, his view of the emergence of human consciousness is part 
of his larger refutation of a Laplacean conception of the universe as reducible to the laws of physics and 
chemistry.  

Related to Polanyi’s discussion at the end of PK, the concept of emergence has recently begun to gain 
prominence among cognitive neuroscientists who model brain function using connectionism. Connec-
tionist models of brain architecture assume that higher-order cognitive functions can only be understood 
globally in terms of patterns of activity distributed over multiple connections in the brain. In this sense, 
and for readers familiar with Juarrero’s work, it could almost be called a dynamical systems approach 
to human cognition (e.g., McClelland et al. 2010). Connectionism stands in opposition to “grandmother 
cell” theories that try to locate thoughts in specific neurons or groups of neurons; representational nativists 
(e.g., Pinker and Chomsky) who argue that humans are born with significant domain-specific knowledge 
located in specialized, predetermined modules in the brain; probabilistic models of cognition, which ad-
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vocate a top-down modeling approach to study cognitive processes; and other computational theories of 
mind (e.g., Fodor and Pylyshyn) which argue that the brain operates like a digital computer.  In contrast to 
these other theories and approaches, connectionists argue that the complex brain architecture of an adult 
is emergent from simpler neural structures (Rumelhart 1987; McClelland et al. 2010, 348; McClelland 
2011, 134). These structures, rather than being pre-programmed to mature a certain way or to specialize 
for pre-determined functions, acquire their abilities by encountering inputs in their environment (Mc-
Clelland 2010, 753).  As a revision of the brain-as-computer metaphor, connectionism informs many of 
the most prominent contemporary discussions about the mind-body relation. It provides a foundation for 
neurophilosophy, eliminative materialism, embodied cognition, dynamic core theory, and work in artifi-
cial intelligence.1  Because connectionism is so fruitful in the cognitive sciences, it is worth considering 
how it might agree with or depart from Polanyi’s understanding of emergence, especially as it relates 
to his larger arguments about human development and the relationship between mind and body. Below 
I explain how many of Polanyi’s objections to the neural model in PK do not apply to current neural 
models based on connectionist assumptions. Connectionism, which favors pattern recognition rather than 
logic as a descriptor of cognitive processing, agrees with many of Polanyi’s points about the nature of 
tacit knowing. Despite such agreement, however, there remains a divergence regarding the status of the 
human person as an active center. 

Connectionism: An Overview

Connectionism traces its origins to the 1940’s with the McCulloch and Pitts neural model, but it is 
generally understood to have begun to take its current form in the 1980’s as a result of studies in artificial 
intelligence (McCleod et al. 1998, 314). It was at this time that David Rumelhart, James McClelland, Geoff 
Hinton and others developed computer models of brain function that operated through parallel distributed 
processing (PDP). PDP involves many small “neuron-like” units operating simultaneously over a multi-
layered network.2 In these networks, information is not carried in whole chunks (such as binary units of 
1 or 0). Instead, it is conveyed as a pattern of activity among many units. For example, whereas a localist 
or symbolic representational system might assign a whole concept, such as “dog,” to a single neuron, a 
small group of neurons, or a single unit in a computer network, distributed systems do not represent or 
store such a concept in any single place. Rather, a representation of “dog” would arise from a pattern of 
activity among many different units, units which are also used to represent other concepts, like cats or 
coyotes (Elman et al. 1999, 90-91).   This pattern of activity is generated and stored as a potential in the 
weights between connections in the network. These weights reflect the probability that a unit will activate 
given various levels of input (McClelland 2000, 583). 

Thus, connectionism treats the human brain primarily as an information processor.  But unlike other 
brain-as-computer theories, connectionism rejects the notion that the brain operates through symbolic 
processing, with preprogrammed and sequential steps, local storage of memory, and discrete packets of 
information. Instead, they propose that it is more likely that the brain operates through weighted connec-
tions that store and generate information over a distributed network, with units operating in parallel and 
with larger systems emerging from simpler architectures (Elman et al. 1999, 50-56).3 

Since the 1980s, parallel distributed processing models of cognitive function have shown that signifi-
cant cognitive tasks, such as learning the meaning of words and identifying similarities and differences 
between objects, can be performed by multiple simple units working in parallel in layered networks 
(Rumelhart and Todd 1993, 14-15; Elman 1990, 200). Much current work in connectionism focuses on 
modeling human learning and development, and researchers in the field have built computer models that 
mimic how humans acquire and perform higher-order cognitive tasks such as learning how to pronounce 
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words (Plaut et al. 1996), learning advanced rules of syntax (Elman 1993), recognizing faces from multiple 
angles (McLeod et al.. 1998, 294-300), predicting the effects of weight and distance on a balance beam 
(McClelland 1989), and reconstructing a whole image from a partial association (Hertz et al. 1991). To 
demonstrate the biological plausibility of the models, the performance of these networks is often compared 
with studies in human cognition, including studies of children’s acquisition of similar tasks as well as studies 
of patients with brain damage. More recently, researchers at The Neurosciences Institute have developed 
brain-based devices (BBDs) with artificial nervous systems that allow these devices to learn about their 
environment and to navigate in response to it. As these devices learn about their environment, each one 
develops in its artificial brain a unique activity pattern between connections (Edelman 2006, 131-141).  

In short, connectionists argue that many higher-order cognitive functions—as well as physiological 
structures (e.g., specialized brain regions) and developmental processes (e.g., critical periods)—are emer-
gent (McClelland 2010, 751). In these theories, the term “emergence” is assumed to be the appearance of 
unpredictable structural novelty, especially those with causal potency.  Complex abilities, structures, and 
processes involve a large number of simple elements that are shaped into a new structure by dynamic, 
contextual forces (McClelland 2010, 754).  The novel form cannot be reduced to any of its constituent 
elements; it is dependent on but more than the sum of its parts. A complementary assumption is that new 
structures by their very nature are not designed. Although connectionists allow for initial constraints to 
be placed on individual components of a complex system (e.g., a learning rule or simple starting archi-
tecture), they argue that these initial constraints cannot determine in themselves what the final emergent 
form will be.  The neurons that will be involved in processing language, for example, are not specialized 
for this task until they find themselves in an environment saturated with linguistic input (Elman et. al. 
1999, 265-267). The complexity of a network’s final configuration is not pre-programmed.4

 

Polanyi’s Critique of the Neural Model

These dynamic features of connectionist networks distance contemporary neurobiology from Polanyi’s 
critique of the “neural model” of mind. In PK, Polanyi objected to a neural model of the human mind for 
two reasons.  The first reason is that a neural model, by focusing on the subsidiary contribution of the 
body to the comprehensive entity which is the mind, destroys the thing it is trying to understand. Just as 
reducing life to the laws of physics and chemistry is meaningless, he writes, “it is likewise meaningless to 
represent mind in terms of a machine or of a neural model” (PK, 382). I discuss this first critique toward 
the end of the paper. The second reason, which is more prominently discussed in PK, is that neural models 
are characterized as automated, formalized, specified systems of explicit inference, systems incapable 
of the tacit inferences that characterize human thought. A closer look at Polanyi’s understanding of a 
“neural model,” however, demonstrates that it differs from connectionist assumptions about the nature 
of neurocomputation. 

When Polanyi refers to neurology or the “neural model” in PK, he consistently likens it to a symbolic 
processing machine. He objects to the neurological model precisely because he objects to those who would 
see the mind as a kind of computer. But in PK, “computer” means digital computer, which is significantly 
different than a computer working on a parallel distributed processing model.  The chief problem that 
Polanyi identifies with digital computers, inference machines, and automation in general is that they try 
to formalize and specify the unformalizable and the unspecifiable; in so doing they eliminate the tacit 
coefficient that constitutes the active center of a human person (PK, 257-8). Automation, if it is cleverly 
designed, may seem intelligent, but this intelligence is illusory: it can never be more than the manipulation 
of symbols through the use of prescribed rules specified and formalized by its program. Because rules 
are fed to the machine in advance, there is no room, he says, for unformalizable, unspecifiable (i.e. tacit) 
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components to enter into its operation: “A routine game of chess can be played automatically to the extent 
to which the rules of art can be specified. While such a specification may include random elements, like 
choices made by spinning a coin, no unspecifiable skill or connoisseurship can be fed into a machine” (PK, 
261).  By extension, neural models, for Polanyi, also operate by “fixed symbolic operations” (PK, 337), 
assuming pre-determined rules that foreclose the possibility of unspecified, tacit contributions to human 
life. He calls this the “automatic neurological model” (PK, 262), a model that, should it admit of human 
consciousness, could only allow for a consciousness that was superfluous to the automatic functioning 
of a nervous system over which it could exert no influence (PK, 336). In short, Polanyi rejects neurology 
because it is “based on the assumption that the nervous system—functioning automatically according to 
the known laws of physics and chemistry—determines the workings which we normally attribute to the 
mind of an individual” (PK, 262; emphasis mine).

Like Polanyi, connectionists also reject the metaphor of mind as a digital computer.  Unlike digital 
computers—which run input symbols through a series of rules in a formal program in order to reach an 
output—connectionist networks do not work by symbols or deterministic programs. Instead, patterns of 
activation trigger other patterns of activation that lead to an output. Over time, as the network encoun-
ters common patterns in the environment, some pathways between connections are strengthened while 
others are weakened. Whereas digital computers are characterized by “fixed symbolic operations,” the 
connectionist network that has discovered structure in its environment is not the same as the one that 
was originally built by a human technician. Similarly, unlike most who use the metaphor of the mind 
as digital computer, connectionists also reject the claim that genes “code” for higher-order cognition or 
complex neural structures. Instead of likening genes to a “computer program” or a “blueprint,” they use 
the metaphor of genes as “catalysts” that enable—but do not direct—the emergence of new structures and 
processes (Elman et al. 1999, 350-351). In this sense, connectionism agrees with Polanyi’s view that DNA 
“evokes the ontogenesis of higher levels, rather than determining them” (KB, 235; emphasis original). 

Emergence 

Given this brief sketch of connectionist perspectives, the question now arises: do connectionist net-
works achieve “higher levels” of being in the sense that Polanyi means it?  True emergence, for Polanyi, 
is more than mere holism:  the irreducibility of emergent entities, he writes, “must not be identified with 
the mere fact that the joining of parts may produce features which are not observed in the separate parts” 
(KB, 230). Instead, emergence requires the addition of higher supervening principles—boundary condi-
tions that harness lower levels of being. For a connectionist model to be truly emergent, it would have to 
be under dual control, with a higher operational principle harnessing the boundary conditions left open 
by lower levels. In this section, I want to suggest that the set of weights found in a trained network may 
constitute such an operational principle. Just as personal acts of knowing comprise the tacit integration 
of subsidiaries into focal wholes, so too do networks integrate subsidiary inputs into global patterns of 
activity. Higher order operational principles emerge when networks cross their own conceptual “gap,” a 
point in the training where the network achieves the ability to better discriminate between inputs. The set 
of constraints found in a trained network enable it to complete tasks which other networks with random 
weight assignments cannot complete.

The possibility of a network’s emergence due to dual control can be seen in connectionist expla-
nations of the mechanics underlying sudden insights and new developmental achievements.  It is worth 
here recalling that Polanyi sees the process of scientific discovery—a process marked by sudden insight 
as one crosses a heuristic gap—as paradigmatic for tacit knowing (TD, 24-25) and for the emergence of 
mind (PK, 395). The new interpretative framework that arises when we cross a heuristic gap is “of the 
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same kind” as the emergence of individual personhood, a process undergone in stages and culminating 
in the emergence of human culture (PK, 395). Personal commitment leads to a passionate striving toward 
a hidden reality and to the eventual achievement of discovery (TD, 25; PK, 311-312).  Because such 
striving and achievement involves personal commitment, the process of scientific discovery and other 
forms of emergence related to the human person cannot be formalized or prespecified (TD, 25; PK, 311-
312). Instead, we integrate subsidiaries informally, achieving focal awareness and understanding in an 
unspecified way. Most striking is how connectionism suggests that this process of tacit integration can 
be observed in the global patterned activity of networks processing inputs across a large number of small 
(subsidiary), weighted connections. 

Tacit integration of this kind can be seen in connectionist explanation of sudden learning. Like humans 
moving from one phase of knowledge to another, where they may at first not understand or only partially 
understand a concept before gaining mastery, artificial connectionist networks sometimes demonstrate 
sudden, unexpected advancements in their ability to process information. Such complex outcomes, 
however, are the result not of new enabling interventions or dramatically new learning mechanisms but 
rather of simple learning mechanisms making small changes over time. One example is a network de-
veloped to identify the sum of a sequence as even or odd. After 17,999 training cycles, the network was 
limited in its ability to identify whether the sequence was odd or even and had not been able to extract 
a general principle. On the very next training cycle, cycle 18,000, the network was suddenly able to 
give the right answer in all instances (Elman et al. 1999, 230-236).  Looking from the outside it would 
seem that the network passed through a dramatic stage in its development—or that it crossed a heuristic 
gap. This jump in ability, however, was the result of a single learning algorithm making a large number 
of small adjustments to connection strengths. These small changes amounted not to a linear change in 
output—with each adjustment corresponding to an observable change in the system’s behavior. Rather, 
the small adjustments to weigh strengths resulted in non-linear change at output. The network’s behavior 
seemed not to be affected until a critical threshold of change had been passed, after which point outputs 
changed significantly. Another example of sudden, seemingly dramatic learning can be found in a network 
developed by Plunkett and Marchman to learn vocabulary. Like children, who exhibit sudden vocabulary 
spurts around 22 months, the network also demonstrated distinct jumps in its ability both to produce and 
comprehend vocabulary (Plunkett et al. 1993). As with the first network, the large change in output did 
not occur as a result of a large change or addition to the network’s basic learning mechanisms. In both 
cases, and as is common in dynamical systems (Juarerro 1999, 123-125), small incremental changes led 
to complex, seemingly sudden and dramatic changes in the systems’ behavior. 

 For Polanyi, the child’s ability to speak represents an emergent achievement.  Through the inten-
sification of his or her own individuality, higher-level operational principles take control, allowing the 
knower to form meaningful coherences out of subsidiaries—in this example, to distinguish and produce 
meaningful utterances from a collection of various sounds (KB, 233, 235).   It is the child’s own operation 
of tacit knowing that allows him or her to move from unbounded subsidiaries (mere sound) to meaningful 
coherences (words) controlled by new operational principles.  What exactly happens then when an arti-
ficial network gains the ability to distinguish words from sounds? Like other machines, such networks 
seem to be working according to a higher operational principle irreducible to physics and chemistry; 
like living beings, they seem to have achieved such higher operational principles through an emergent 
process. Given the absence of passionate striving and personal commitment, however, we cannot say that 
such a network has achieved something in the same way that living beings do. Yet clearly something has 
happened when a network that has not been programmed to do so acquires an ability to make conceptual 
distinctions and to formulate conceptual prototypes. Like Polanyi’s description of the developing child 
at the end of PK, whatever has happened to the network is not the result of a program running through its 
operations or of an external agent intervening at every step.  Polanyi describes the first view as the belief 
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that a genetic program already contains all of the instructions for the mature adult and that maturation is 
simply the carrying out of these prespecified directions. This view is not shared by connectionist theories 
of human cognition or by connectionist modelling. Although connectionist networks begin with basic 
starting architecture (cf. basic wiring of neurons in the brain) and are equipped with a learning algorithm 
(cf. properties of neurons that allow them to strengthen or weaken connections with other neurons), it 
would not be accurate to say that a network’s successful performance is the result of its simply running 
its program. Nor can it be said that the programmer intervenes and adjusts the network to meet the task at 
hand. The weights of an “immature” connectionist network respond to stimuli it encounters in the envi-
ronment. Although programmers “intervene” by providing the network with a training environment, it is 
significant that they do not actually rewire connections or rewrite programs to help the network perform. 
The same algorithm used in one task could be used by another network performing a very different task. 
The formative variable is the training environment.

Are these networks then “determined by” their training environment? Perhaps, and I will revisit this 
question below.  For now, suffice it to say that the new weight space that develops in a connectionist 
network could be said to function as a new operational principle bringing the system under dual control. 
That is, the new weight configurations of a trained network, a set of constraints that processes information 
predictably and using a pattern it had not previously used, harness the principles left open by the bound-
ary conditions of the network’s lower levels of being, the random activation that precedes the trained 
network’s patterned activation.  Thus, the trained network would seem to exist, in Polanyi’s terms, as an 
emergent from the untrained network. 

It should not be surprising then to see connectionists themselves noticing those characteristics of 
thought and intelligence that Polanyi considers throughout his writings. In an article about the topic of 
emergence in cognitive science, James McClelland, one of the leading original members of the PDP 
research group that first developed connectionist networks, discusses the possibility of the emergence 
of consciousness in a way that evokes Polanyi’s concepts of achievement, success, convivial societies, 
heuristic striving, and tacit knowing. The similarities are so striking that McClelland (2010, 752-753; 
emphases mine) deserves to be quoted at length:

But, in fact, these simple regularities [emergent forms of dynamic systems] are not 
the essence of intelligence or the supreme achievements of nature. When it comes to 
intelligence, the real stuff consists of human success in everyday acts of perception, 
comprehension, inductive inference, and real-time behavior—areas where machines 
still fall short after nearly 60 years of effort in artificial intelligence—as well as the 
brilliant creative intellectual products of scientists and artists such as Newton, Darwin, 
Einstein, Shakespeare, Michaelangelo [sic], and Beethoven. According to an emergen-
tist perspective, all of these products of the mind are essentially emergents. I do not 
think anyone who emphasizes the importance of emergent processes would deny that 
planful, explicitly goal-directed thought plays a role in the greatest human intellectual 
achievements. However, such modes of thought themselves might be viewed as emergent 
consequences of a lifetime of thought-structuring practice supported by culture and 
education (Cole & Scribner, 1974). Furthermore, proponents of the essence of human 
thought as an emergent phenomenon might join with Hofstadter (1979) and others in 
suggesting that key flashes of insight and intuition may not have arisen from planful, 
explicit goal-directed thought alone, but instead might reflect a massive subsymbolic 
constraint-satisfaction process taking place outside of awareness. In the case of Darwin, 
for instance, biographers (e.g., Quammen, 2006) have written about the origins of his 
work on his theory of evolution. It appears that Darwin set his mind to this investigation 
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knowing intuitively that there was something interesting to discover, while not knowing 
exactly what it was. This intuition, arguably the key factor in his discovery, might have 
arisen as an emergent consequence of a subconscious constraint-satisfaction process, 
which then led him to engage in more intentional (yet still perhaps intuition-guided) 
exploration. This sequence in discovery may be the rule even in formal domains such 
as mathematics and physics, where the intuition may come first, followed only later by 
formal specification and rigorous proof (Barwise & Etchemendy, 1991).

For McClelland, explicit inferences, conscious thought, and scientific discovery may arise from the tacit 
workings of an individual who has lived and worked in a convivial society: They are “emergent conse-
quences of a lifetime of thought-structuring practice supported by culture and education.” The bulk of this 
paragraph sounds as if it were written by someone familiar with Polanyi’s writings, with the exception of 
the phrase “sub-symbolic constraint satisfaction process”—and here lies the crucial departure from Polanyi.  
A central—perhaps the central feature of Polanyi’s theory of personal knowledge and tacit knowing is 
the existence of an “active center,” a human person who strives towards that which is only intimated. In 
McClelland’s quote above, we see the hallmarks of this active center: achievements, successes, heuristic 
striving, intuitive intimation of future discovery. But in the place of the active center out of which these 
things proceed, we get a sub-symbolic constraint satisfaction process. What emerges in these models is 
a set of probabilistic constraints governing the interaction of physical neurons and groups of neurons. 

	 Gradients of Probability and “Enlarged Laws of Nature”

How might such a vision of emergence correspond to Polanyi’s understanding of the emergence of 
an active center? The idea that probabilistic constraints may play a role in the emergence of mind is not in 
itself antithetical to Polanyi’s view and, in fact, plays a major role in his writing. The distinction between 
the emergence of machine-like principles in nature and the emergence of mind involves the relationship of 
the emergent to its gradient of probability. Returning to his discussion of DNA, for example, we see this 
gradient of probability working as a causal force. Here he argues that if DNA is to be seen as a blueprint 
for a complex machine, the machine’s growth “seems to require a system of causes not specifiable in terms 
of physics and chemistry, such causes being additional both to the boundary conditions of DNA and to 
the morphological structure brought about by DNA” (KB, 231-2). That system of causes responsible for 
the development of the embryo, he describes variously as an “integrative power,” “field-like powers,” 
and “a gradient of potential shapes.” 

It is significant here that Polanyi refers to Waddington’s epigenetic landscape, which depicts a mar-
ble in a hilly landscape moving toward a wall (Waddington 1957, 67).  He says that these images “show 
graphically that the growth of the embryo is controlled by the gradient of potential shapes, much as the 
motion of a heavy body is controlled by the gradient of potential energy” (KB, 232; emphasis added). In 
other words, as a heavy body at the top of a hill will, with minimal force, be pulled to the bottom, so will 
an embryo be pulled towards the most probable shapes along the course of its development.5 

This process of being pulled along a gradient of greatest probability is described in connectionist 
terminology as descending along an error gradient or settling into a weight space. They too refer to Wad-
dington, noting the similarity between his landscapes and their graphic representation of a network error 
surface. A network moving toward a solution to a problem in a weight space is said to be seeking “low 
ground” in its error surface—the point in the landscape where errors will be minimal (Elman et al. 1999, 
17-18). The descent of a network along an error gradient as it arrives closer to achieving a solution to a 
problem set resembles Polanyi’s description of how a knower makes contact with reality in a heuristic field: 

We assume that the gradient of a discovery, measured by the nearness of discovery 
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prompts the mind towards it…. The assumption of a heuristic field explains now how 
it is possible that we acquire knowledge and believe that we can hold it, though we 
can do this only on evidence which cannot justify these acts by any acceptable strict 
rules. It suggests that we may do so because an innate affinity for making contact with 
reality moves our thoughts—under the guidance of useful clues and plausible rules—to 
increase ever further our hold on reality (PK, 403).

For connectionists, this “innate affinity” is the computational properties of neurons. Under both mod-
els—connectionist error surface and Polanyi’s heuristic field—making contact with objective reality is 
described as descending along a gradient. For connectionists, it is the potential of the initial weight con-
ditions, the network’s learning algorithm, the quality of inputs, and the changing internal constraints of 
the developing set of weights that pull a network toward low points. For Polanyi, however, there comes 
a point in the development of the embryo where a higher operational principle—the individual’s active 
center—harnesses this movement in the field of potentialities so that it no longer moves passively along 
lines of force but actively seeks its own direction. Gradients of probability, he says, control the development 
of the embryo, but not the active center of an individual. For the latter, such gradients only go so far as to 
open up possible opportunities for behavior, without determining or controlling that behavior (PK, 403).

It is unclear how connectionist theories would respond to Polanyi’s distinction between entities pas-
sively following a line of force along a probability gradient and those—like the human person—which 
actively traverse their environment.  Even taking into account the role of modulatory and attentional 
systems, it would be difficult to reconcile with connectionism this jump from passive movement to active 
movement. Active movement in the sense that Polanyi means it would simply be a much more complex 
network following lines of probability, no more active than simpler networks. The emergence of a com-
plex brain which “speaks mainly to itself” (to use Gerald Edelman’s words [2006, 20]) would still seem, 
from the perspective of connectionism, to be largely the product of a unique dynamic system responding 
to inputs in the environment, inputs which exist along too many dimensions for an error landscape to 
fully represent. Despite the seemingly deterministic role that the training environment still seems to play 
in shaping these networks, however, connectionist “emergence” does seem to correspond to Polanyi’s 
intimation of “enlarged laws of nature,” laws that would enable the rise of consciousness in biological 
material and that would allow consciousness to shape that material for its own ends: “Since action and 
reaction usually arise together in nature, it would seem reasonable, on the contrary, that the new laws of 
nature, which would allow for the rise of consciousness in material processes, should also allow for the 
reverse action, that is, of conscious processes acting on their material substrate” (PK, 397).   In viewing 
the brain as a complex, dynamical system, connectionist thought suggests that as higher order cognitive 
functions emerge they direct and shape the very material on which they depend—that is, the physical 
synapses that carry and store information—by choosing among alternative behaviors, beliefs, and inter-
pretive frameworks (Edelman 2006, 95). In this way, the nonlinear dynamics of connectionist networks 
do seem to use “enlarged laws of nature” that make possible a third alternative to the unwelcome views 
of human development as either genetically pre-determined or as requiring external intervention at every 
stage (PK, 395).

Despite many points of confluence, prominent connectionists who speak about the existence of mind 
tend to make statements antithetical to Polanyi’s philosophy. At one end of the spectrum, for example, 
the Churchland’s eliminative materialism posits that concepts used in “folk psychology” (e.g., desire, 
belief, fear, intention) can and should be eliminated in favor of material, neurobiological explanations 
(Churchland 1992, 6). At the other end of the spectrum, Gerald Edelman (2006), an anti-reductionist, 
describes consciousness as the activity of the brain’s dynamic core. For him, our thoughts and feelings 
are entailments of brain states: just as the spectrum of hemoglobin is not separated from but entailed in 
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the molecular structure of hemoglobin, qualia are non-causal but faithfully informative of our brain states 
(91-92). Despite the remarkable strides made by connectionism and the fruitfulness of it as an explana-
tory theory, the central problem that Polanyi identifies still remains: so long as we focus on mechanics, 
including the dynamics of a complex system, the human person disappears. Neurobiological explanations 
account for failures of cognition and provide a detailed explanation of the conditions that it requires. But 
they cannot define success. The meanings we find in the world—a skillful dance performance, a word, the 
expression on a familiar face—are real, though artificial. They are created by a knower who constructs 
a coherent mental representation out of subsidiaries. Just as these realities disappear when we focus on 
their subsidiary components, so too does the mind when we focus on neurobiology. 

Thus, perhaps the biggest point of divergence between Polanyi and various strands of connectionist 
thought is located in Polanyi’s articulation of the relationship between knowing and being. Scientists who 
see themselves as endeavoring to strip away illusions or as trying not to be fooled by appearances have 
already subscribed to a generative metaphor—one that places them in an imagined position of mastery, 
or potential mastery, over both the untrustworthy shows of nature and the masses who are still enchanted. 
This knower-as-master contrasts with the knower who gropes around seeking to touch or make contact 
with reality. Polanyi’s assertion that we know by dwelling in a comprehensible object or process thus 
points to the inadequacy of descriptive explanation as a full map of reality.  If, as connectionists say, 
our physical bodies change in response to what we encounter in our environment, connections become 
stronger or weaker and neuronal structures are built and dismantled, we might call these changes a form of 
indwelling, as information takes on physical (non-linguistic, sub-symbolic) form in the brain’s microcir-
cuitry.  We may then know through indwelling as these subsidiary connections register high-dimensional 
discriminations. But, as Polanyi notes, what we know, what interests us, is something other than mere 
prototype vectors. If connectionists are right that our conscious thoughts and feelings correspond in some 
way to brain networks that register discriminations among a very large number of dimensions, then the 
descriptive language used in the sciences is inadequate to the task of fully recording and replicating such 
fine-grained, quickly changing activity. Attempts to articulate our knowledge, including attempts by sci-
entists, will always leave out many dimensions of experience, including the experience we are trying to 
describe—we will always know more than we can say. As creatures who know through indwelling, we 
must articulate those truths we have come to know by drawing on multiple forms of expression, including 
figurative language, music, image, gesture, and even silence. Thus, it may not be as helpful to talk about 
emergent things, as if an emergent must be fully described and describable. Instead, we ought to look 
(as Polanyi does) at emergence as a process of knowing, whereby the many dimensions of being unfold, 
shift, open themselves up to us in ways that exceed our ability to capture fully in language. Regarding 
the mind-body question, Polanyi’s post-critical philosophy continues to challenge us both to embrace 
new discoveries of neurobiology and to reject the idea that they are sufficient to explain what we are as 
humans and how we ought to live. 

ENDNOTES

1See, for example, on neurophilosophy Churchland (1989); on eliminative materialism, Churchland 
(1992); on embodied cognition, Lakoff and Johnson (1999) and Feldman (2006); on dynamic core theory, 
Edelman (1987); on artificial intelligence, Smolensky (1987).

2Rumelhardt (1987) describes his frustration with forms of AI based on symbolic processing as a mo-
tive for his looking to the brain for inspiration. If we took seriously the notion that the brain is a computer, 
he asked, what kind of computer would it be and how would it process information? The fruitfulness of 
connectionist models is found in their radically different method of processing information, not in a claim 
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for strict biological plausibility. Artificial connectionist networks are not intended to correspond exactly to 
neurons or neuronal groups, which exist on a scale much greater than any model that can be currently built 
and which involve the interaction with various modulatory hormonal systems. Rather, these networks are 
supposed to process information in ways that more closely resemble the operations of the brain than other 
computational theories of cognition based on a Turing-Machine, von Neumann, digital-computer model. 

3Connectionism does not foreclose the possibility of emergent higher-order structures working in 
ways that appear to be rule governed.  As such, they are not opposed to computational models that try to 
capture these phenomena (McClelland et al. 2010, 349-350; Feldman 2006). The disagreement arises when 
models of larger brain structures or processes are used as the bases of explanatory theories (McClelland 
et al. 2010, 350). The connectionist position on modularity is, perhaps, best summed up by Elman et al. 
(1999) in the following: “domain-specific representations can emerge from domain-general architectures 
and learning algorithms and . . . can ultimately result in a process of modularization as the end product 
of development rather than its starting point” (115).

4For an account of how human brains might have evolved to take on initial architectural constraints 
rather than genetically determined brain regions see Elman et al. 1999, 238-317; McLeod et al. 1998, 
303-313; Calabretta and Parisi 2005.

5See David Agler (2014) for an extended discussion of Polanyi’s references to experimental embry-
ology and its influence on his writings on emergence.
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